Robust Kernel Representation With Statistical Local Features for Face Recognition
نویسندگان
چکیده
منابع مشابه
Robust local features for remote face recognition
Article history: Received 25 October 2015 Received in revised form 28 March 2017 Accepted 13 May 2017 Available online 31 May 2017 In this paper, we propose a robust local descriptor for face recognition. It consists of two components, one based on a shearlet-decomposition and the other on local binary pattern (LBP). Shearlets can completely analyze the singular structures of piecewise smooth i...
متن کاملRecognition with Local Features: the Kernel Recipe
Recent developments in computer vision have shown that local features can provide efficient representations suitable for robust object recognition. Support Vector Machines have been established as powerful learning algorithms with good generalization capabilities. In this paper, we combine these two approaches and propose a general kernel method for recognition with local features. We show that...
متن کاملHuman Face Recognition with Different Statistical Features
This paper examines application of various feature domains for recognition of human face images to introduce an efficient feature extraction method. The proposed feature extraction method comprised of two steps. In the first step, a human face localization technique with defining a new parameter to eliminate the effect of irrelevant data is applied to the facial images. In the next step three d...
متن کاملTuning Kernel Parameters with Different Gabor Features for Face Recognition
Kernel methods like support vector machine, kernel principal component analysis and kernel fisher discriminant analysis have recently been successfully applied to solve pattern recognition problems such as face recognition. However, most of the papers present the results without giving kernel parameters, or giving parameters without any explains. In this paper, we present an experiments based a...
متن کاملKernel sparse representation with pixel-level and region-level local feature kernels for face recognition
Face recognition has been popular in pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, Sparse Representation based Classification (SRC) was proposed as a novel image classification approach, which is very effective with sufficient training samples for each class. However, the performance drops when the number of training s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2013
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2013.2245340